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ABSTRACT

Current trends in model construction in the field of agent-
based computational economics base behavior of agents on
either game theoretic procedures (e.g. belief learning, fic-
titious play, Bayesian learning) or are inspired by artificial
intelligence (e.g. reinforcement learning). Evidence from
experiments with human subjects puts the first approach in
doubt, whereas the second one imposes significant compu-
tational and memory requirements on agents.

In this paper, we introduce an efficient computational im-
plementation of n-th order rationality using recursive sim-
ulation. An agent is n-th order rational if it determines its
best response assuming that other agents are (n−1)-th order
rational and zero-order agents behave according to a spec-
ified, non-strategic, rule. In recursive simulations, the sim-
ulated decision makers use simulation to inform their own
decision making (search for best responses).

Our goal is to provide agent modelers with an off-the-shelf
implementation of n-th order rationality that leads to model-
consistent behaviors of agents, without requiring a learning
phase. We extend two classic games (Shapley’s fictitious
play and Colonel Blotto) to illustrate aspects of the n-th
order rationality concept as implemented in our framework.

Categories and Subject Descriptors

J.2 [Social and Behavioral Sciences]: Economics—Game
Theory ; I.2.11 [Artificial Intelligence]: Distributed Arti-
ficial Intelligence—Multi-agent Systems

General Terms

Algorithms,Economics,Cognition

Keywords

Recursive Agent-based Models, Multiagent Learning and
Decision-making, Cognitive Architecture

1. INTRODUCTION
In John Maynard Keynes’ most well-known book [17, Chap-

ter 12] he describes the behavior of investors as follows:
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... professional investment may be likened
to those newspaper competitions in which the
competitors have to pick out the six prettiest
faces from a hundred photographs, the prize be-
ing awarded to the competitor whose choice most
nearly corresponds to the average preferences of
the competitors as a whole; so that each competi-
tor has to pick, not those faces which he himself
finds prettiest, but those which he thinks likeli-
est to catch the fancy of the other competitors,
all of whom are looking at the problem from the
same point of view. It is not a case of choosing
those which, to the best of one’s judgment, are
really the prettiest, nor even those which average
opinion genuinely thinks the prettiest. We have
reached the third degree where we devote our in-
telligences to anticipating what average opinion
expects the average opinion to be. And there are
some, I believe, who practice the fourth, fifth and
higher degrees.

This kind of rationality is called in economics n-th order
rationality. A formal definition is presented in [21]. An agent
is first-order rational if it calculates the best response to his
beliefs about strategies of zero-order agents1 and the state of
the world. An agent is n-th order rational if it determines its
best response assuming that the other agents are (n− 1)-th
order rational2.

H. Simon [25] differentiates between agents capable of
achieving rational outcomes deus ex machina (substantive
rationality, which does not provide a plausible mechanism by
which rational results might be achieved) and those operat-
ing according to feasible but potentially less capable heuris-
tics (procedural rationality). Analytical game theory, with
it’s highly abstract concepts like perfect Bayesian equilib-
rium, is substantively rational for well-conditioned environ-
ments. However, wide classes of substantively rational so-
lution concepts are computationally intractable and there-
fore are unlikely to be useful in reality3. A concept of n-
th order rationality belongs to procedural rationality class,
but aims to bridge procedural and substantive approaches.

1As discussed later, the exact choice of behavioral rule for
zero-order agent’s is usually case-specific and could include
random behavior, continuation of historical behavior (our
default) or any non-strategic learning rule.
2The philosophy behind an iterated process of strategic
thinking has been outlined in [2].
3See [1] for discussion of computational complexity of dif-
ferent concepts of market equilibrium in economics.
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First, it permits models with different levels of player ratio-
nality (through the choice of n). Second, as shown in this
paper, it can be efficiently implemented and solved even for
complex environments.

As outlined in the next section, the concept of n-th order
rationality has recently applied in economic models of sim-
ple environments with small n. However, in problems with
complex environments and heterogeneous agents, tracking
n-th order behaviors becomes analytically tedious and com-
putational methods need to be applied.

In this paper, we introduce an efficient computational im-
plementation of n-th order rationality using recursive simu-
lation. Doing this, we demonstrate:

1. A structural design that enables introduction of n-th
order rational agents into any agent-based model;

2. That agents using n-th order rationality behave in a
model-consistent manner without requiring any learn-
ing phase4;

3. Sensitivity analysis of model results with respect to
the computational and cognitive complexity of agents
is enabled by the n-th order rationality approach.

Lastly, recursive models based on n-th level rationality
have a number of degrees of freedom (for example: ratio-
nality levels for all strategic agents), that can be calibrated
using data. If this is accomplished, models perform descrip-
tive role. By increasing the rationality level of an selected
agent by 1, we generate guidelines with respect to how this
agent should behave, therefore having n-th level rationality
fill the normative role of a decision framework that guides an
agent on its course of action in a multi-agent setting (second-
best approach in cases when calculation of Nash equillibra
is computationally infeasible).

2. LITERATURE OVERVIEW
Traditionally, modeling of procedural rationality has aimed

to represent learning processes. T. Brenner [28, Chapter 18]
discusses the categorization of artificial intelligence inspired
learning models including non-conscious learning, routine-
based learning and belief learning. Experimental economics
and psychology have made increasingly larger contributions
to this knowledge in recent years, but no model has been
found to be uniformly superior to others ([28, Chapters 18
and 19]).

An alternative to both the equilibrium theories (assum-
ing substantial rationality) as well as learning approaches is
constituted by the Cognitive Hierarchies (later CH) model,
presented in [4]5. The CH model consists of iterative deci-
sion rules for players doing k steps of thinking, and the fre-
quency distribution f(k) (assumed to be Poisson) of step k

4A properly designed learning process should converge in the
long run to the best response to the play by the other agents
at every stage. This condition is called model-consistency
and was introduced by J. Hannan in [12]. Usually, for a
learning agent to become model-consistent, a long ”burn-
in” phase is required (it is difficult to estimate a priori it’s
duration, see Section 4.1). Our approach skips this phase
and obtains model-consistent behaviors outright.
5The first review articles with empirical support for CH and
related concept of k-level rationality as cognitive architec-
ture for individuals appeared in early 2000, see [5] and [10].

players. The iterative process begins with step 0 types who
don’t assume anything about their opponents and merely
choose according to some probability distribution. Step k
thinkers assume their opponents are distributed, according
to a normalized Poisson distribution (with mean τ), from
step 0 to step k − 1. CH has been validated with human-
based experiments where it has been found that τ = 1.5 fits
data from many canonical games much better than extant
learning-based approaches.

Both learning-based approaches reviewed by Brenner as
well as CH theory suffer from two common problems. First,
they are geared towards population games, where each of
the agents does not distinguish between individual oppo-
nents, but rather its payoff is derived from its own strategy
and some aggregate of the population strategy. Second, the
applications are most often limited to iterated single-stage
(stateless) games.

The field of artificial intelligence offers solutions that do
not suffer from these weaknesses. For example, [27] and [15]
offer a framework for multi-agent reinforcement learning in
stochastic games6. Given a stochastic game, the algorithms
proposed converge to a Nash equilibrium when other agents
are adaptable, otherwise an optimal response will be played,
leading to better performance than the traditional single
agent learning methods. Multi-agent reinforcement learning
algorithms require agents to build internal representations
of their environment and opponents, progressively updated
as experience is accrued. The generality and weak assump-
tions of this solution come at a cost: sample complexity
(measuring duration of ”burn-in” phase necessary for agents
to become model-consistent) is rather high, possibly too high
for realistic economic modeling applications7.

We will try to escape the trade-offs made by the extant
approaches by application of recursive simulation methodol-
ogy. As defined in [8], recursive simulation requires the sim-
ulated decision makers to use simulation to inform their own
decision making. In our approach, the structure of internal
models used by agents will be isomorphic with the structure
of the model in which they themselves are embedded. Such
considerations are common in the economic literature. In
fact, the so called ”Lucas critique” ([19]) posits that in order
to design a policy intervention, one should model how indi-
viduals and institutions account (model) for the change in
policy, and then aggregate the individual decisions to calcu-
late the effects of the policy change.

Interestingly, a few applications of k-level rationality in
computational models have appeared. For example, trading
models [7] and [14] use it simulate a double auction, using
analytically pre-calculated best responses. Recursive tech-
niques using strategic prediction of opponent behavior have
been applied to pursuit-evade tasks in fashion similar to ap-
proximation techniques used by multi-agent reinforcement
learning, see [6, 29]. To our knowledge, no one has studied
a case where internal models of agents are isomorphic with
models in which agents are themselves embedded, structure
which will be described in Section 3.

A caveat belongs here. The assumption that agents are
able to reconstruct the model they belong to implies that

6Stochastic game is a set of n-agent normal-form games aug-
mented with rules for transitions depended on actions of
agents. See [24, Section 2] for the definition.
7Y. Shoham raises this point with respect to the Trading
Agent Competition ([24]).



Maciej Łatek, Robert Axtell, Bogumil Kaminski • Bounded Rationality via Recursion

459

they are representations of real-life institutions and corpora-
tions rather than individuals. Nevertheless, for application
areas like mechanism design and industrial organization, this
assumption fits well. In fact, it might be the case that it
becomes increasingly valid as time flows, due to spread of
modeling methods amongst the business community and the
phenomenon of revolving doors. As noted in [13]:

... much regulatory rule-making is informal
and case specific, and the inability of a firm to
correctly forecast agency decisions imposes costs.
Part of the value of of having a recent ex-regulator
as an advisor will be his ability to predict - more
accurately than someone without inside experi-
ence - agency decisions.

The anticipation of other players’ decisions and explic-
itly trying to account for models used by adversaries is al-
ready part of business and regulatory activities, contribut-
ing to feasibility of using our framework as a description of
oligopolistic markets8.

3. RECURSIVE DECISION MAKING
Suppose one is given a multi agent simulation Ψ, popu-

lated with K agents. The state of the simulation at time
t is defined as all relevant information, excluding policies
of agents, and will be denoted as Ct. Each of the agents
has an associated L-dimensional space of potential actions
Ai

t ⊂ �L 9, which may depend on the current state of sim-
ulation Ct. Suppose that the behavior of agent i at time t
can be described by a policy pi

t.
The specification of policy pi

t will be kept open and made
case-specific. The set of policies for the whole population
used at time t will be denoted as pt, a K-dimensional vector
of policies.

Any agent-based simulation Ψ is a map, which for a given
Ct and a fixed set of policies of agents pt returns both
the next state Ct+1 as well as a vector of rewards rt =
(r1

t , . . . , rK
t ) for each of the agents:

(rt, Ct+1) = Ψ (pt, Ct) .

Two remarks need to be made about Ψ. First, in general
(rt, Ct+1) are random variables, either due to nondetermin-
istic decision rules pt or to possible randomness of the agent
activation scheme. Therefore, a single run of simulation Ψ
yields only one realization of these variables. Second, we will
assume that as long as an agent can construct description
of the initial state of Ψ and assume particular policies for
opponents, it can evaluate Ψ.

The ability to evaluate Ψ gives agents a powerful forecast-
ing tool10. Superimposing Ψ produces forecasts about future
rewards rt, . . . , rt+h and future states of the core simulation

8One could speculate, that as more and more of economic
activity is driven by models and the homogeneity of those
models increases (and this includes synthetic markets with
agent traders), the empirical relevance of recursive models
grows
9Here and later we denote period number by subscript and
player number by superscript

10We need to underline here that our focus is on domains, like
industrial organization, with players already using advanced
analytics to guide their decision making.

Ct+1, . . . , Ct+h for any arbitrary horizon h and scenario of
policy trajectories Pt,h = (pt, . . . ,pt+h).

We will assume that agent i wants to maximize expected
discounted stream of rewards for a certain planning horizon
h by controlling policies

(
pi

t, . . . , p
i
t+h

)
:

max
(pi

t,...,pi
t+h)

h∑
j=0

γjE
(
ri

t+j

)

where γ is the discount rate11.
For non-trivial Ψ, i’s payoff and trajectory through state

space will depend not only on policy agent i sets, but also
on policies of the other agents.

We will assume that agents in the simulation behave ac-
cording to n-th order rationality scheme. Let us denote by
Ξi(d, h) = (Ξi

0(d, h), . . . , Ξi
h(d, h)) the optimal policy trajec-

tory (pi
t, . . . , p

i
t+h) of i-th player in planning horizon h as-

suming that his order of rationality is equal to d. A 0-order
rational agent replicates his last action. Assuming that the
initial state of the simulation Ct and last actions of all agents
pt−1 are public we get:

Ξi(0, h) =
(
pi

t−1, . . . , p
i
t−1

)
︸ ︷︷ ︸

h+1

The values of Ξ for agents having rationality order d > 0
are defined recursively. In each period d-th order rational
player i assumes that other players (k �= i) will be playing
(d − 1)-th order rational strategy Ξk(d − 1, h). Therefore
i-th player will optimize:

Ξi(d, h) ≡ argmax
(pi

t,...,pi
t+h)

h∑
j=0

γjE
(
ri

t+j

)

subject to:

∀j ∈ {0, . . . , h} : (rt+j , Ct+j+1) = Ψ(pt+j , Ct+j)

pt+j = pi
t+j ∪ {Ξk

j (d− 1, h)}k �=i

In short, the optimization process for agent i would involve
following steps:

1. Clone the current state of the simulation Ct
12.

2. Assume a particular policy trajectory for other agents
P−i

t,h ≡ Pt,h−
{
pi

t, . . . , p
i
t+h

}
. If d > 0, P−i

t,h is obtained

by solving problems Ξ(d − 1, •) for competitors. If
d = 0, by assuming that they will continue their last
policies for the next h periods.

3. Adjust
(
pi

t, . . . , p
i
t+h

)
such that the expected discounted

reward stream is maximized. The objective function
is evaluated by running the core simulation Ψ for h
periods forward, keeping P−i

t,h fixed.

11Note that in order to calculate expected values of ri
t+j it is

necessary to run simulation Ψ multiple times.
12In this paper, we assume that Ct is all public information.
Private information includes current policies as well as in-
dividual d and h. There is neither need for parameters d
and h to be homogeneous in the population nor need they
be public. In the case of heterogeneity, agent i will use his
private values to instantiate Ξi(di, hi). Please see Section 6
for discussion of alternatives.
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Solving Ξ(•, •) generates an extended best-response dy-
namic. For d = 1, the best response is calculated, while
d = 2 yields the best response to one’s expectations of the
others’ best responses. Parameter h controls how myopic
the agents are. We will discuss the consequences of setting
different values of d and h in the Section 5.

4. IMPLEMENTATION AND COMPLEXITY

ASPECTS

4.1 Complexity Analysis
Let’s try to express computational complexity Ξ(•, •), us-

ing as a base cost of single iteration of simulation Ψ. Four
factors can influence computational complexity of the our
problem:

d, K : in each recursion tree, Kd−1 calls to optimization
algorithm are made;

h, L : using a global optimization algorithm to solve deci-
sion problem of dimensionality hL, one can expect to
make O

(
ehL

)
calls to the objective functions in the

worst case.

Multiplying all the terms and using properties of big O
notation, worst case computational complexity of single de-

cision maker’s Ξ(d, h) is O
(
e(d−1)ln(K)hL

)
. This translates

to the cost of whole simulation of O
(
Ke(d−1)ln(K)hL

)
. For

comparison, numerical search for Nash equilibrium when no
assumptions about Ψ can be made would cost O

(
KhLeKhL

)
,

see [23]. This means that even for large d, the worst case
computational cost of d-th order rationality is significantly
smaller than of substantive rationality.

Furthermore, there are at least two ways of reducing this
cost. First, note that we have assumed that state of simula-
tion Ct is public. In such a case, for d ≥ 2, decision makers
on the market will be solving a lot of identical subproblems
that can be pruned to reduce the complexity of the whole

simulation to O
(
KehL + e(d−2)ln(K)hL

)
.

Second, agent’s can trace how such surfaces and decisions
they imply change with each additional degree of rational-
ity, ceteris paribus. In particular, we can define a marginal
change to policy with an additional degree of rationality as:

δ(d, Ct) =
∥∥∥Ξi(d + 1, 1) (Ct)− Ξi(d, 1) (Ct)

∥∥∥
and then sample from the space of possible set of simula-
tion states to establish the shape of E (δ(d)). As discussed
in [5], under k-th order rationality, as k grows large, play-
ers doing k and k + 1 steps of thinking will, in the limit,
have the same beliefs, make the same ex ante choices, and
have the same expected payoffs, therefore we would expect
limd→∞ E (δ(d)) = 0 for our problem as well. This observa-
tion opens a possibly of agents doing a dynamic cost-benefit
analysis on parameters d, h, endogenizing rationality levels
when computation is costly.

4.2 Implementation
Figure 1 presents a general design pattern for recursive

simulations. The key part of the design includes making
the simulation object implement Cloneable and Probeable

*1Simulation FIxedStrategy
Agent Strategy11

is composed of follows

Standard

Cloneable

Strategy
Optimizer

*1Simulation StrategicAgent Strategy11
is composed of follows

1

1
launches generates new Strategy for agent

Probeable

clones and
runs

Recursive

Figure 1: A canonical agent-based simulation (upper
panel) augmented with recursive agents (lower panel). The
simulation object needs to be queried for payoffs and pol-
icy profiles, an ability ensured by implementing a Probeable

interface. Both simulation as well as all agents need to be
Cloneable. Independence of external resources helps to keep
it self contained. StrategicAgents need to be coupled with
a generic global optimization solver used to search the pol-

icy space. StrategyOptimizer uses a cloned simulation to
evaluate the fitness of policies and the solve Ξ (•, •) problem.

interfaces13, such that each strategic agent can instantiate a
self contained simulation, one necessary to solve the Ξ(•, •)
optimization problem.

As many layers of simulations contained within simula-
tions might need to be instantiated, the framework used
needs to be relatively lightweight. Note that Ξ(•, •), thanks
to the tree-like nature of each of the decision problems, could
be parallelized easily in multithreaded environments. As
long as depth of recursion d is large enough and agents are
responding simultaneously to the same information set Ct,
distributed implementation should offer full benefits of scale.
For this purpose, we have adopted the discrete simulation
engine described in [20].

Of great importance is the issue of the optimization al-
gorithm applied. Examples from Section 5 were run using
the real valued genetic algorithm provided by off-the-shelf
library OAToolbox developed by [3]. In addition, the frame-
work has been integrated with the Gamut library ([22]) and
all of the games implemented there might be played with
our n-th order rational agents14.

5. VERIFICATION
For the purpose of verifying the correctness of our im-

plementation, we will use a non-stationary iterated game.
Suppose one is given a bimatrix game B and uses it to de-
fine a Φ mapping with properties from Section 3. We will
start by listing components of B:

13Cloneable interface provides a deep copy of Java objects,
while the Probeable interface is our custom interface provid-
ing probes returning accrued payoffs and strategies of agents
present in the simulation.

14Materials pertaining to our simulation can be down-
loaded from https://www.assembla.com/wiki/show/
recursiveengines. In particular, the website features more
experiments establishing face and technical validity of the
framework, docking it with extant models and checking
the robustness of the obtained results. Working papers
describing two applications ([18, 16]) can also be accessed
at that location.
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B =
〈
A1, A2, Q1 (A1, A2) , Q2 (A2, A1)〉

where Ai and Qi are the action-set and payoff matrix for
agent i. Assume that behavior of player i at time t is de-
scribed with probability distribution pi

t over set Ai. In such
a case, the single-stage payoff for player i, Bi

(
pi

t, p
−i
t

)
can

be obtained by simple multiplication:

Bi
(
pi

t, p
−i
t

)
= pi

tQ
ip−i

t

Game B is too simple too make a good verification testbed.
We will inject the path dependency into game by making
policy adjustment costly and define a new game Φ. Suppose
that player i using policy pi

t has determined that in face
of the policy of opponent p−i

t , it is desirable to change its
policy to pi

t+1. We can modify i’s payoff using following
transformation of stage payoff:

Φ1,i
(
pi

t, p
−i
t , pi

t+1

)
= pi

tQ
ip−i

t − δ
∥∥∥pi

t − pi
t+1

∥∥∥
The information set used at time t will include past poli-

cies and the stage payoff matrix, Ct =
{
p1

t−1, p
2
t−1, B

}
. This

yields the second component Φ2,i in a natural way.
We will use this trick to create two testbeds, one based

on the generalized Shapley bimatrix game, the other on the
so called Colonel Blotto bimatrix game. The Shapley game
will be used to dock Ξ(•, •) with low-rationality behaviors
considered in [26] and look for evidence of policy convergence
with increase in d. The Colonel Blotto game will investigate
differential advantages agents can obtain by using Ξ(•, •)
logic and compare simulated policies with results of [9]. In
addition, computational cost of Ξ(•, •) will be described.

5.1 Generalized Shapley Game
In the 1960s Shapley provided an example of a two-player

fictitious game with periodic behavior. In this game, agent
A aims to copy agent’s B behavior and agent A aims to
play one ahead of agent B. In [26] Shapley’s example was
generalized by introducing an external parameter β. Two
agents A and B play following family of 3 × 3 games with
single stage payoffs determined by the matrices:

A =

⎛
⎝ 1 0 β

β 1 0
0 β 1

⎞
⎠ B =

⎛
⎝ −β 1 0

0 −β 1
1 0 −β

⎞
⎠

It has been shown the periodic behavior in Shapley’s ex-
ample at some critical value of β disintegrates into unpre-
dictable (chaotic) behavior, with players dithering a huge
number of times between different policies. At a further
critical parameter the dynamics becomes periodic again, but
now both players aim to play one ahead of the other. As
proved in [26] those two critical parameters are σ equal to
the golden mean ≈ 0.618 and τ ≈ 0.915 such that:

• for β ∈ (−1, σ) the players typically end up repeating
Shapley’s pattern; in fact, for β ∈ (−1, 0) regardless of
the initial positions, the behavior tends to a periodic
one (for β ≥ 0 this is not true: then there are orbits
which tend to the interior equilibrium and/or other
periodic orbits).
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(a) Fast oscillations for β = −0.3.
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(b) Slow oscillations for β = −0.8.
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(c) Erratic (possibly chaotic) behavior for β = 0.8.

Figure 2: Evolution of mixed policies pA
t and pB

t for three
generalized Shapley games with different values of β. The
parameter δ = 0.5 for all of the simulations and behavioral
logic used was Ξ(1, 1) .
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Figure 3: Sample policy landscape for Blotto game under
Ξ(3, 1) policy with δ = 0. Fitness (color-coded z-axis) mea-
sures total payoff from 100 Monte Carlo samples for each pi

t.
Note that in this case, no point global maximum exists and
any pi

t where probability of taking T2 is assigned 0 has sim-
ilar payoff. For this particular game, lack of unique global
maximum in solution of Ξ (•, •) may prevent convergence of
policies as the degree of rationality grows (see Table 1 for
more details).

• for β ∈ (σ, τ) the players become extremely indecisive
and erratic (and the moves become chaotic), while

• for β ∈ (τ, 1) the players typically end up playing the
anti-Shapley pattern.

We posit that there exists δ, such that two players us-
ing Ξ(1, 1) replicate dynamics presented in [26]15. Figure 2
features three sample runs of generalized Shapley game for
different values of β with δ = 0.5. Shapes of policy tra-
jectories are consistent with those predicted by apparatus
of [26], showing that under costly adjustment of strategies,
for d = 1 our framework would generate similar answers to
dynamics caused by fictitious best responses.

In the next section we investigate what happens when
level of rationality d is increased.

5.2 Colonel Blotto Game
Colonel Blotto game is a zero-sum game of strategic mis-

match between two agents X and Y , studied by E. Borel and
first solved in [11]. A policy px

t for player X can be writ-
ten as a real vector px

t =
{
x1

t , x
2
t , . . . , x

m
t

}
with

∑m
i=1 xi

t =

1, xi
t ∈ [0, 1], where xi represents the fraction of the budget

allocated to front i, and m is the total number of fronts.

15If penalty δ = 0, past policies do not constrain players,
which start playing equilibrium mix (

{
1
3
, 1

3
, 1

3

}
for both A

as well as B) as d increases. Setting δ > 0 and Ξ(1, 1)
is equivalent to fictitious play assumption [26], where the
strategies of opponents, against which best responses are
calculated, are updated gradually.

Here, both players are symmetric and have the same avail-
able budget. The single-stage payoff to px

t against py
t is:

m∑
i=1

sgn
(
xi

t − yi
t

)

where the function

sgn (ξ) =

⎧⎨
⎩
−1 if ξ < 0

0 if ξ = 0
1 if ξ > 0.

We assume m > 2. Otherwise, the game always ends in
a tie. It can be shown that there is no pure strategy Nash
Equilibrium. A pure strategy px

t that allocates resources
to the i-th front, xi

t > 0, will lose to the strategy py
t that

allocates no resources to the ith front and more resources to
all other fronts:

yi
t = 0, yj

t = xj
t +

xi
t

m− 1
∀j �= i

[11] showed that the Colonel Blotto game has a mixed
strategy equilibrium in which the marginal distributions are
uniform on [0, 2

m
] along all fronts. This unpredictability

leaves the opponent with no preference for one strategy or
another as long as no front is allocated more than 2

m
re-

sources. More modern treatment of this game can be found
in [9], where interactions between individual fronts were per-
mitted.

Colonel Blotto game is used to test influence of rational-
ity levels on payoffs of agents. First, please refer to Figure
4 for a number of sample game trajectories under different
conditions. On that Figure, the normalizing influence of δ is
very explicit. When costs are significant, the main strategy
applied by player is to try to match the distribution of op-
ponents and then try to shift minimal possible increments
such that victory is ensured (this corresponds to trajectories
that first intersect, and then turn into small scattered clouds
around the intersection point). Second, Table 1 summarizes
performance of two players, dr-th order rational row player
and dc-th order rational column player in Colonel Blotto
game:

1. Symmetric dc = dr leads to the same payoffs for both
players (equal to 0 as the game is zero-sum). This
holds only in the long run. In the short run, payoff
variance may be significant;

2. The maximum payoff row player obtains happens when
his decision making model is true (that is, when col-
umn player is of type dc = dr − 1), regardless of delta.

3. For fixed rationality of column player and low adjust-
ment cost (δ = 0), increasing dr when dr > dc+1 leads
to decrease in payoff (cost of over strategizing).

4. On average, payoffs decrease as rationality levels in-
crease and approach 0. Also, relative payoff’s variance
decreases in the symmetric case (which means players
start playing equilibrium strategies);

Summarizing, for large k, there is no marginal reward for
a k-th order player to think harder (as Table 1 shows, in
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Game for δ = 0 Game for δ = 0.5

Rationality of column player Rationality of column player

0 1 2 3 4 5 0 1 2 3 4 5

R
a
ti
o
n
a
li
ty

o
f
ro

w
p
la

y
er 0 0 −99 −5 −4 −1 0 0 −99 −98 −92 −93 −91

1 99 0 −23 0 3 4 99 0 −47 −48 −53 −47
2 5 23 0 −10 −7 −2 98 47 0 −29 −40 −45
3 4 0 10 0 −5 4 99 48 29 0 −19 −25
4 1 −4 7 5 0 −4 99 53 40 19 0 −12
5 −1 −2 2 −4 4 0 92 47 45 25 12 0

Table 1: Summary of performance of players of different levels of rationality in the Colonel Blotto game with δ ∈ {0, 0.5}.
As the game is zero-sum, only payoffs of the row player were recorded. The payoffs are scaled as percents of the maximal
theoretical payoff, averaged out over 1000 runs per setting, duration of each was set to 100 iterations. At 0.05 significance
level, green payoffs are significantly > 0, red are less than < 0 and blue can not be distinguished from 0.

context of Blotto game, it may be even detrimental if ad-
justment costs are small). We posit that this is caused by the
lack of the unique solution to Ξ(•, •), situation visualized on
Figure 3. This means that for some games, limits to strate-
gic thinking exist and that those limits would apply to any
form of rationality, procedural or substantive (called equilib-
rium selection problem in that specific context). The benefit
of our approach is that we can explicitly quantify for any sit-
uation how far one can go before reasoning stops benefiting
decision maker. This opens up a interesting research ques-
tion of designing cost-benefit analysis scheme that would
account for that danger and dynamically adjust rationality
levels.

6. SUMMARY AND EXTENSIONS
In this paper, we have introduced a context-independent

computational implementation of n-th order rationality and
demonstrated its functionality on two test cases. We showed
how an n-th order rationality model deviates systemati-
cally from equilibrium predictions as agents are engaged in
a multi-tiered game of outguessing each others’ responses to
the current state of world. We presented a structural de-
sign that enables introduction of n-th order rational agents
into any agent-based model and demonstrated that agents
using n-th order rationality are model-consistent and do not
require learning in order to behave well.

We have demonstrated the ease with which sensitivity
analysis with respect to rationality assumptions can be per-
formed. While doing so, we identified a number of open
questions which will serve as a base for future research.
First, we are performing more disciplined investigation of
sensitivity / sensibility of Ξ(•, •) with respect to d and h for
wide classes of games. Second, we are trying to establish a
link between existence of non-unique solutions to Ξ(•, •) and
equilibrium selection problem from game theory / prediction
boundaries problem. Lastly, we are intend to develop ana-
lytical convergence and regret proofs for Ξ(•, •) docking it
within other results from game theory and machine learning.

Concurrently with theory work, we found the framework
to be extensible with respect to the perturbation of defini-
tions of strategies and the structure of underlying Ψ. For
example, in [16], we propose a computational model of a
telecommunication market with realistic call patterns among
customers. In that paper, a market design question is tack-
led: identification of a robust plan for regulating intercon-

nection fees. The strategy space includes multiple price tra-
jectories that need to be set by n-th order rational operators.
Additionally, that model is filled with thousands of non-
strategic customers that used simple heuristics to provide
operators with feedback on market effects of their decisions.

Another angle is investigated in [18], a simulation of ir-
regular warfare environments. In that paper, we study co-
evolution of strategies between security and terrorist orga-
nizations, allowing for assymetric information about state
of the simulation C. All codes, supplementary results as
well as application papers can be downloaded from https:

//www.assembla.com/wiki/show/recursiveengines.
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